Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(3)2023 03 05.
Article in English | MEDLINE | ID: covidwho-2287153

ABSTRACT

Almost all published rooting and dating studies on SARS-CoV-2 assumed that (1) evolutionary rate does not change over time although different lineages can have different evolutionary rates (uncorrelated relaxed clock), and (2) a zoonotic transmission occurred in Wuhan and the culprit was immediately captured, so that only the SARS-CoV-2 genomes obtained in 2019 and the first few months of 2020 (resulting from the first wave of the global expansion from Wuhan) are sufficient for dating the common ancestor. Empirical data contradict the first assumption. The second assumption is not warranted because mounting evidence suggests the presence of early SARS-CoV-2 lineages cocirculating with the Wuhan strains. Large trees with SARS-CoV-2 genomes beyond the first few months are needed to increase the likelihood of finding SARS-CoV-2 lineages that might have originated at the same time as (or even before) those early Wuhan strains. I extended a previously published rapid rooting method to model evolutionary rate as a linear function instead of a constant. This substantially improves the dating of the common ancestor of sampled SARS-CoV-2 genomes. Based on two large trees with 83,688 and 970,777 high-quality and full-length SARS-CoV-2 genomes that contain complete sample collection dates, the common ancestor was dated to 12 June 2019 and 7 July 2019 with the two trees, respectively. The two data sets would give dramatically different or even absurd estimates if the rate was treated as a constant. The large trees were also crucial for overcoming the high rate-heterogeneity among different viral lineages. The improved method was implemented in the software TRAD.


Subject(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/genetics , Trees , Phylogeny , Evolution, Molecular
2.
Viruses ; 13(9)2021 09 08.
Article in English | MEDLINE | ID: covidwho-1411089

ABSTRACT

All dating studies involving SARS-CoV-2 are problematic. Previous studies have dated the most recent common ancestor (MRCA) between SARS-CoV-2 and its close relatives from bats and pangolins. However, the evolutionary rate thus derived is expected to differ from the rate estimated from sequence divergence of SARS-CoV-2 lineages. Here, I present dating results for the first time from a large phylogenetic tree with 86,582 high-quality full-length SARS-CoV-2 genomes. The tree contains 83,688 genomes with full specification of collection time. Such a large tree spanning a period of about 1.5 years offers an excellent opportunity for dating the MRCA of the sampled SARS-CoV-2 genomes. The MRCA is dated 16 August 2019, with the evolutionary rate estimated to be 0.05526 mutations/genome/day. The Pearson correlation coefficient (r) between the root-to-tip distance (D) and the collection time (T) is 0.86295. The NCBI tree also includes 10 SARS-CoV-2 genomes isolated from cats, collected over roughly the same time span as human COVID-19 infection. The MRCA from these cat-derived SARS-CoV-2 is dated 30 July 2019, with r = 0.98464. While the dating method is well known, I have included detailed illustrations so that anyone can repeat the analysis and obtain the same dating results. With 16 August 2019 as the date of the MRCA of sampled SARS-CoV-2 genomes, archived samples from respiratory or digestive tracts collected around or before 16 August 2019, or those that are not descendants of the existing SARS-CoV-2 lineages, should be particularly valuable for tracing the origin of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics , SARS-CoV-2/genetics , Animals , COVID-19/transmission , Evolution, Molecular , Genomics/methods , Humans , Phylogeny , SARS-CoV-2/classification
SELECTION OF CITATIONS
SEARCH DETAIL